Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this work, we construct the Born and inverse Born approximation and series to recover two function-valued coefficients in the Helmholtz equation for inverse scattering problems from the scattering data at two different wave-numbers. An analysis of the convergence and approximation error of the proposed regularized inverse Born series is provided. The results show that the proposed series converges when the inverse Born approximations of the perturbations are sufficiently small. The preliminary numerical results show the capability of the proposed regularized inverse Born approximation and series for recovering the isotropic inhomogeneous media.more » « less
-
Free, publicly-accessible full text available April 30, 2026
-
We present an algorithm for the computation of scattering poles for an impenetrable obstacle with Dirichlet or Robin boundary conditions in acoustic scattering. This paper builds upon the previous work of Cakoni et al. (2020) titled ‘A duality between scattering poles and transmission eigenvalues in scattering theory’ (Cakoni et al. 2020 Proc. A. 476, 20200612 (doi:10.1098/rspa.2020.0612)), where the authors developed a conceptually unified approach for characterizing the scattering poles and interior eigenvalues corresponding to a scattering problem. This approach views scattering poles as dual to interior eigenvalues by interchanging the roles of incident and scattered fields. In this framework, both sets are linked to the kernel of the relative scattering operator that maps incident fields to scattered fields. This mapping corresponds to the exterior scattering problem for the interior eigenvalues and the interior scattering problem for scattering poles. Leveraging this dual characterization and inspired by the generalized linear sampling method for computing the interior eigenvalues, we present a novel numerical algorithm for computing scattering poles without relying on an iterative scheme. Preliminary numerical examples showcase the effectiveness of this computational approach.more » « less
-
We discuss a novel approach for imaging local faults inside an infinite bi-periodic layered medium in ℝ3 using acoustic measurements of scattered fields at the bottom or the top of the layer. The faulted area is represented by compactly supported perturbations with erroneous material properties. Our method reconstructs the support of perturbations without knowing or reconstructing the constitutive material parameters of healthy or faulty bi-period layer; only the size of the period is needed. This approach falls under the class of non-iterative imaging methods, known as the generalized linear sampling method with differential measurements, first introduced in [2] and adapted to periodic layers in [25]. The advantage of applying differential measurements to our inverse problem is that instead of comparing the measured data against measurements due to healthy structures, one makes use of periodicity of the layer where the data operator restricted to single Floquet-Bloch modes plays the role of the one corresponding to healthy material. This leads to a computationally efficient and mathematically rigorous reconstruction algorithm. We present numerical experiments that confirm the viability of the approach for various configurations of defectsmore » « less
-
This paper concerns the analysis of a passive, broadband approximate cloaking scheme for the Helmholtz equation in Rd for d = 2 or d = 3. Using ideas from transformation optics, we construct an approximate cloak by “blowing up” a small ball of radius ϵ > 0 to one of radius 1. In the anisotropic cloaking layer resulting from the “blow-up” change of variables, we incorporate a Drude-Lorentz- type model for the index of refraction, and we assume that the cloaked object is a soft (perfectly conducting) obstacle. We first show that (for any fixed ϵ) there are no real transmission eigenvalues associated with the inhomogeneity representing the cloak, which implies that the cloaking devices we have created will not yield perfect cloaking at any frequency, even for a single incident time harmonic wave. Secondly, we establish estimates on the scattered field due to an arbitrary time harmonic incident wave. These estimates show that, as ϵ approaches 0, the L2 -norm of the scattered field outside the cloak, and its far field pattern, approach 0 uniformly over any bounded band of frequencies. In other words: our scheme leads to broadband approximate cloaking for arbitrary incident time harmonic waves.more » « less
-
In this paper we examine necessary conditions for an inhomogeneity to be non‐scattering, or equivalently, by negation, sufficient conditions for it to be scattering. These conditions are formulated in terms of the regularity of the boundary of the inhomogeneity. We examine broad classes of incident waves in both two and three dimensions. Our analysis is greatly influenced by the analysis carried out by Williams in order to establish that a domain, which does not possess the Pompeiu Property, has a real analytic boundary. That analysis, as well as ours, relies crucially on classical free boundary regularity results due to Kinderlehrer and Nirenberg, and Caffarelli.more » « less
-
Abstract We investigate an inverse scattering problem for a thin inhomogeneous scatterer in R m , m = 2, 3, which we model as an m − 1 dimensional open surface. The scatterer is referred to as a screen. The goal is to design target signatures that are computable from scattering data in order to detect changes in the material properties of the screen. This target signature is characterized by a mixed Steklov eigenvalue problem for a domain whose boundary contains the screen. We show that the corresponding eigenvalues can be determined from appropriately modified scattering data by using the generalized linear sampling method. A weaker justification is provided for the classical linear sampling method. Numerical experiments are presented to support our theoretical results.more » « less
An official website of the United States government
